4.6 Article

Theory of a resonant level coupled to several conduction-electron channels in equilibrium and out of equilibrium

Journal

PHYSICAL REVIEW B
Volume 75, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.125107

Keywords

-

Ask authors/readers for more resources

The spinless resonant level model is studied when it is coupled by hopping to one of the arbitrary numbers of conduction-electron channels. The Coulomb interaction acts between the electron on the impurity and in the different channels. In the case of a repulsive or attractive interaction the conduction electrons are pushed away or attracted to ease or hinder the hopping by creating unoccupied or occupied states, respectively. In the screening of the hopping orthogonality catastrophe plays an important role. At equilibrium in the weak- and strong-coupling limits the renormalizations are treated by perturbative, numerical, and Anderson-Yuval Coulomb gas methods. In the case of two leads the current due to applied voltage is treated in the weak-coupling limit. The presented detailed study should help to test other methods suggested for nonequilibrium transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available