4.7 Article

Targeted delivery and enhanced cytotoxicity of cetuximab-saporin by photochemical internalization in EGFR-positive cancer cells

Journal

MOLECULAR PHARMACEUTICS
Volume 4, Issue 2, Pages 241-251

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mp060105u

Keywords

photochemical internalization; photodynamic therapy; drug delivery; immunotoxin; EGFR; saporin; drug targeting; cetuximab

Ask authors/readers for more resources

Photochemical internalization (PCI) is a novel technology of macromolecular delivery. By PCI, endocytosed membrane-impermeable therapeutic drugs are photochemically released from entrapment in endo-lysosomal compartments to the cytosol of target cells. In the present report, we describe the in vitro proof-of-concept for PCI of cetuximab-saporin, an immunotoxin targeting EGFR-expressing cells. This immunotoxin consists of the chimeric murine-human IgG(1) monoclonal antibody cetuximab (C225 or Erbitux) bound to the type I ribosome-inactivating protein toxin saporin by a biotin-streptavidin linkage. The photochemical treatment enhanced the cytotoxicity of the immunotoxin in a synergistic manner in three different EGFR-expressing carcinoma cell lines derived from different tumor tissues (colorectal, HCT-116; prostate, DU-145; and epidermis, A-431). Both cytotoxicity of cetuximab-saporin and epifluorescence of Alexa488-cetuximab were evaluated by competition with cetuximab demonstrating specific binding and uptake of cetuximab-saporin in EGFR positive cells. In the EGFR-negative uterine sarcoma cell line MES-SA, neither binding nor preferential accumulation of Alexa488-cetuximab was detected. In addition, PCI enhanced the cytotoxicity of cetuximab-saporin to the same extent as streptavidin-saporin in the MES-SA cells. In conclusion, PCI enhances selectivity of the cytotoxicity of the immunotoxin cetuximab-saporin in EGFR-expressing cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available