4.8 Article

Auxin biosynthesis by the YUCCA genes in rice

Journal

PLANT PHYSIOLOGY
Volume 143, Issue 3, Pages 1362-1371

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.106.091561

Keywords

-

Categories

Ask authors/readers for more resources

Although indole-3-acetic acid (IAA), the predominant auxin in plants, plays a critical role in various plant growth and developmental processes, its biosynthesis and regulation have not been clearly elucidated. To investigate the molecular mechanisms of IAA synthesis in rice (Oryza sativa), we identified seven YUCCA-like genes (named OsYUCCA1-7) in the rice genome. Plants overexpressing OsYUCCA1 exhibited increased IAA levels and characteristic auxin overproduction phenotypes, whereas plants expressing antisense OsYUCCA1 cDNA displayed defects that are similar to those of rice auxin-insensitive mutants. OsYUCCA1 was expressed in almost all of the organs tested, but its expression was restricted to discrete areas, including the tips of leaves, roots, and vascular tissues, where it overlapped with expression of a beta-glucuronidase reporter gene controlled by the auxin-responsive DR5 promoter. These observations are consistent with an important role for the rice enzyme OsYUCCA1 in IAA biosynthesis via the tryptophan-dependent pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available