4.8 Article

MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast

Journal

NATURE
Volume 446, Issue 7131, Pages 46-51

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature05561

Keywords

-

Funding

  1. NCRR NIH HHS [U54 RR020839] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM072024] Funding Source: Medline

Ask authors/readers for more resources

The mating pathway in Saccharomyces cerevisiae has been the focus of considerable research effort, yet many quantitative aspects of its regulation still remain unknown. Using an integrated approach involving experiments in microfluidic chips and computational modelling, we studied gene expression and phenotypic changes associated with the mating response under well-defined pheromone gradients. Here we report a combination of switch-like and graded pathway responses leading to stochastic phenotype determination in a specific range of pheromone concentrations. Furthermore, we show that these responses are critically dependent on mitogen-activated protein kinase (MAPK)-mediated regulation of the activity of the pheromone-response-specific transcription factor, Ste12, as well as on the autoregulatory feedback of Ste12. In particular, both the switch-like characteristics and sensitivity of gene expression in shmooing cells to pheromone concentration were significantly diminished in cells lacking Kss1, one of the MAP kinases activated in the mating pathway. In addition, the dynamic range of gradient sensing of Kss1-deficient cells was reduced compared with wild type. We thus provide unsuspected functional significance for this kinase in regulation of the mating response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available