3.8 Article

Finite element simulation for short pulse light radiative transfer in homogeneous and nonhomogeneous media

Journal

JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME
Volume 129, Issue 3, Pages 353-362

Publisher

ASME
DOI: 10.1115/1.2430720

Keywords

transient radiative transfer; finite element; absorbing and scattering media; micro-scale; non-intrusive diagnostics

Ask authors/readers for more resources

With the rapid progress on ultrashort pulse laser the transient radiative transfer in absorbing and scattering media has attracted increasing attention. The temporal radiative signals from a medium irradiated by ultrashort pulses offer more useful information which reflects the internal structure and properties of media than that by the continuous light sources. In the present research, a finite element model, which is based on the discrete ordinates method and least-squares variational principle, is developed to simulate short-pulse light radiative transfer in homogeneous and nonhomogeneous media. The numerical formulations and detailed steps are given. The present models are verified by two benchmark cases, and several transient radiative transfer cases in two-layer and three-layer nonhomogeneous media are investigated and analyzed. The results indicate that the reflected signals can imply the break of optical properties profile and their location. Moreover the investigation for uniqueness of temporal reflected and transmitted signals indicate that neither of these two kinds of signals can be solely taken as experimental measurements to predict the optical properties of medium. They should be measured simultaneously in the optical imaging application. The ability of the present model to deal with multi-dimensional problems is proved by the two cases in the two-dimensional enclosure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available