4.5 Article

Hidden fermion as milli-charged dark matter in Stueckelberg Z′ model

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 3, Pages -

Publisher

SPRINGER
DOI: 10.1088/1126-6708/2007/03/120

Keywords

hadronic colliders; beyond standard model; LEP HERA and SLC physics; supersymmetric standard model

Ask authors/readers for more resources

We augment the hidden Stueckelberg Z' model by a pair of Dirac fermions in the hidden sector, in which the Z' has a coupling strength comparable to weak scale coupling. We show that this hidden fermion-antifermion pair could be a milli-charged dark matter candidate with a viable relic density. Existing terrestrial and astrophysical searches on milli-charged particles do not place severe constraints on this hidden fermion. We calculate the flux of monochromatic photons coming from the Galactic center due to pair annihilation of these milli-charged particles and show that it is within reach of the next generation gamma-ray experiments. The characteristic signature of this theoretical endeavor is that the Stueckelberg Z' boson has a large invisible width decaying into the hidden fermion-antifermion pair. We show that existing Drell-Yan data do not constrain this model yet. Various channels of singly production of this Z' boson at the LHC and ILC are explored.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available