4.4 Article

Control and ultrasonic actuation of a gas-liquid interface in a microfluidic chip

Journal

JOURNAL OF MICROMECHANICS AND MICROENGINEERING
Volume 17, Issue 3, Pages 609-616

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/17/3/025

Keywords

-

Ask authors/readers for more resources

This paper describes the design and manufacturing of a microfluidic chip, allowing for the actuation of a gas - liquid interface and of the neighboring fluid. The first way to control the interface motion is to apply a pressure difference across it. In this case, the efficiency of three different micro-geometries at anchoring the interface is compared. Also, the critical pressures needed to move the interface are measured and compared to a theoretical result. The second way to control the interface motion is by ultrasonic excitation. When the excitation is weak, the interface exhibits traveling waves, which follow a dispersion equation. At stronger ultrasonic levels, standing waves appear on the interface, with frequencies that are half the integer multiple of the excitation frequency. An associated microstreaming flow field observed in the vicinity of the interface is characterized. The meniscus and associated streaming flow have the potential to transport particles and mix reagents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available