4.5 Article

Conifer cover increase in the greater yellowstone ecosystem: Frequency, rates, and spatial variation

Journal

ECOSYSTEMS
Volume 10, Issue 2, Pages 204-216

Publisher

SPRINGER
DOI: 10.1007/s10021-007-9023-1

Keywords

yellowstone; conifer expansion; biophysical factors; forest dynamics; conifer cover; aerial photos

Categories

Ask authors/readers for more resources

Extensive fires in recent decades in the Greater Yellowstone Ecosystem (GYE) garnered much attention for causing a significant decrease in the extent of conifer forest cover. Meanwhile, conifer forests in unburned parts of the GYE have continued to increase in extent and density. Conifer cover increase has been well documented by repeat historical photography, but the average rate of increase and the spatial variation remain unquantified. We examined changes in conifer cover across biophysical gradients in the GYE based on stratified random samples from aerial photographs. The percent conifer cover for samples in 1971 and 1999 was quantified to determine the frequency and rate of conifer cover change. A slight majority of samples (56%) showed no change, whereas increases (22%) were balanced by decreases (22%). However, among samples that were not recently burned or logged, or already closed-canopy, nearly 40% increased in conifer cover, at an average annual rate of 0.22%. We quantified significant variability in the frequency and rate of conifer cover increase across gradients of elevation, aspect, vegetation type, and proximity to nearby conifer forest. The most dynamic locations were low density conifer woodlands on northerly aspects at lower elevations, with average annual rates of increase up to 0.51%. This study is significant because it demonstrates that rates of conifer cover increase vary across biophysical gradients, an important consideration for management of dynamic forest ecosystems. Improved understanding of this variability helps us to better understand what factors ultimately cause conifer cover increase. It is also a critical step towards accurate quantification of the magnitude of carbon uptake by conifer cover increase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available