4.3 Article Proceedings Paper

Mass transport properties of auxetic (negative Poisson's ratio) foams

Journal

PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
Volume 244, Issue 3, Pages 817-827

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssb.200572701

Keywords

-

Ask authors/readers for more resources

An auxetic foam structure is described which has the property of widening when stretched (negative Poisson's ratio behaviour), in contrast to the situation with most materials which narrow when stretched. The fabrication of this material involves a combination of heat and compressive treatments of a conventional commercial air-filtration foam. The resulting microstructure is examined by scanning electron microscopy (SEM). The pertinent mechanical properties are described in terms of the changes in specimen dimensions and associated strains. From these quantities, Poisson's ratios are determined for the large strain regime involved. The property of being able to open pores by stretching the material is a useful feature in various types of filtration application. In particular, where the long-term efficiency of the process is hindered by ingress of particles into the system which block the active pore structure, the marriage of permeability and mechanical deformation via a negative Poisson's ratio offers an alternative to other methods of clearance. This notion is illustrated by the use of some very simple tests in which the foam is challenged by glass beads of uniform diameter. Simple air pressure-drop tests are also performed on auxetic and conventional foams to demonstrate that the change in permeability due to mechanical deformation enables a means of varying the pressure-drop acting across an auxetic foam to a far greater degree than is possible for the conventional foams. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available