4.6 Article Proceedings Paper

Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems

Journal

GEOPHYSICS
Volume 72, Issue 2, Pages A19-A23

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.2434781

Keywords

-

Ask authors/readers for more resources

the low-frequency limit, the displacement currents in the Maxwell equations can be neglected. However, for numerical simulations, a small displacement current should be present to achieve numerical stability. This requirement leads to a large range of propagation velocities with high velocities for the high frequencies and low velocities for the low frequencies. As a consequence, the number of time steps may become large. I show that it is possible to transform mathematically the original physical problem to one that has propagation velocities with less frequency dependence. Hence, the number of time steps necessary for a signal to travel a certain distance with the lowest velocity is significantly reduced. A typical example shows a reduction in computational time by a factor of 40. A comparison of the solutions from plane-layered modeling in the frequency and wavenumber domain and the proposed method shows good agreement between the two. The proposed method can also be used for other systems of diffusive equations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available