4.5 Article Proceedings Paper

Quasi phase matching in two-dimensional nonlinear photonic crystals

Journal

OPTICAL AND QUANTUM ELECTRONICS
Volume 39, Issue 4-6, Pages 361-375

Publisher

SPRINGER
DOI: 10.1007/s11082-007-9102-8

Keywords

quasi phase matching; nonlinear photonic crystals; nonlinear frequency conversion; second harmonic generation

Ask authors/readers for more resources

We analyze quasi-phase-matched (QPM) conversion efficiency of the five possible types of periodic two-dimensional nonlinear structures: Hexagonal, square, rectangular, centered-rectangular, and oblique. The frequency conversion efficiency, as a function of the two-dimensional quasi-phase-matching order, is determined for the general case. Furthermore, it is demonstrated for two basic feasible motifs, a circular motif and a rectangular motif. This enables to determine the optimal motif dimensions for achieving the highest conversion efficiency. We find that a rectangular motif is more efficient than a circular motif for quasi-phase-matched processes that rely on a single reciprocal lattice vector (RLV), and that under optimal choice of motif dimensions, it converges into a one-dimensional periodic structure. In addition, in a few specific cases we found that higher order QPM can be significantly more efficient than lower order QPM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available