4.6 Article Proceedings Paper

Optoelectronic retinal prosthesis: system design and performance

Journal

JOURNAL OF NEURAL ENGINEERING
Volume 4, Issue 1, Pages S72-S84

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1741-2560/4/1/S09

Keywords

-

Ask authors/readers for more resources

The design of high-resolution retinal prostheses presents many unique engineering and biological challenges. Ever smaller electrodes must inject enough charge to stimulate nerve cells, within electrochemically safe voltage limits. Stimulation sites should be placed within an electrode diameter from the target cells to prevent 'blurring' and minimize current. Signals must be delivered wirelessly from an external source to a large number of electrodes, and visual information should, ideally, maintain its natural link to eye movements. Finally, a good system must have a wide range of stimulation currents, external control of image processing and the option of either anodic-first or cathodic-first pulses. This paper discusses these challenges and presents solutions to them for a system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a head-mounted near-to-eye projection system operating at near-infrared wavelengths. Photodiodes convert light into pulsed electric current, with charge injection maximized by applying a common biphasic bias waveform. The resulting prosthesis will provide stimulation with a frame rate of up to 50 Hz in a central 10 degrees visual field, with a full 30 degrees field accessible via eye movements. Pixel sizes are scalable from 100 to 25 mu m, corresponding to 640-10 000 pixels on an implant 3 mm in diameter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available