4.6 Article Proceedings Paper

Learning sensory representations with intrinsic plasticity

Journal

NEUROCOMPUTING
Volume 70, Issue 7-9, Pages 1130-1138

Publisher

ELSEVIER
DOI: 10.1016/j.neucom.2006.11.006

Keywords

intrinsic plasticity; information theory; unsupervised learning; independent component analysis; primary visual cortex

Ask authors/readers for more resources

Intrinsic plasticity (IP) refers to a neuron's ability to regulate its firing activity by adapting its intrinsic excitability. Previously, we showed that model neurons combining a model of IP based on information theory with Hebbian synaptic plasticity can adapt their weight vector to discover heavy-tailed directions in the input space. In this paper we show how a network of such units can solve a standard non-linear independent component analysis (ICA) problem. We also present a model for the formation of maps of oriented receptive fields in primary visual cortex and compare our results with those from ICA. Together, our results indicate that intrinsic plasticity that tries to locally maximize information transmission at the level of individual neurons may play an important role for the learning of efficient sensory representations in the cortex. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available