4.6 Article

Radiation pressure on submerged mirrors: Implications for the momentum of light in dielectric media

Journal

OPTICS EXPRESS
Volume 15, Issue 5, Pages 2677-2682

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.15.002677

Keywords

-

Categories

Ask authors/readers for more resources

Radiation pressure measurements on mirrors submerged in dielectric liquids have consistently shown an effective Minkowski momentum for the photons within the liquid. Using an exact theoretical calculation based on Maxwell's equations and the Lorentz law of force, we demonstrate that this result is a consequence of the fact that conventional mirrors impart, upon reflection, a 180 phase shift to the incident beam of light. If the mirror is designed to impart a different phase, then the effective momentum will turn out to be anywhere between the two extremes of the Minkowski and Abraham momenta. Since all values in the range between these two extremes are equally likely to be found in experiments, we argue that the photon momentum inside a dielectric host has the arithmetic mean value of the Abraham and Minkowski momenta. (c) 2007 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available