4.7 Article

Triferrocenes built on a C3-symmetric ligand platform:: Entry to redox-active pseudo-triphenylenes via chelation-driven stereoselection of triple Schiff bases

Journal

INORGANIC CHEMISTRY
Volume 46, Issue 5, Pages 1694-1703

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic062029v

Keywords

-

Ask authors/readers for more resources

An expedient tandem deprotonation-trapping protocol was employed to prepare a tris(difluoroboronyl) complex of a triferrocenyl ligand that is geometrically analogous to substituted triphenylenes. A triple Schiff base condensation reaction between 1,3,5-triformylphloroglucinol and aminoferrocene afforded the tris(N-salicylideneamine) adducts 5a + 5b in ca. 1:1 ratio. The keto-enamine tautomeric core of this isomeric mixture could be converted to a common enolate-imine intermediate. Subsequent trapping with BF3 center dot Et2O cleanly afforded the tris(difluoroboronyl) adduct <6 in essentially quantitative yield. The electronic and structural properties of this new class of ferrocene compounds were investigated using various methods including UV-vis, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and X-ray crystallography. In CH2Cl2-CH3CN, 6 displayed a reversible three-electron oxidation process at E-1/2(ox) = +210 mV (vs Fc/Fc(+)). Despite the sharing of a common [pi,pi]/[n,pi]-conjugated core, no significant electronic communication was observed among the three ferrocenyl units in 6 under either CV or DPV conditions. On the other hand, the broad oxidation wave of 5a + 5b at E-1/2(ox) = +60 mV in CH2Cl2-CH3CN was comprised of at least two major components at +20 and +90 mV, which collapsed to become a single peak in DMF electrolyte, despite that the ratios between the two isomers 5a,b remained essentially invariant to the change in solvent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available