4.6 Article

Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor

Journal

OPTICS EXPRESS
Volume 15, Issue 5, Pages 2307-2314

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.15.002307

Keywords

-

Categories

Ask authors/readers for more resources

We have fabricated and tested, to the best of our knowledge, the first microfluidic device monolithically integrated with planar chalcogenide glass waveguides on a silicon substrate. High-quality Ge23Sb7S70 glass films have been deposited onto oxide coated silicon wafers using thermal evaporation, and high-index-contrast channel waveguides have been defined using SF6 plasma etching. Microfluidic channel patterning in photocurable resin (SU8) and channel sealing by a polydimethylsiloxane (PDMS) cover completed the device fabrication. The chalcogenide waveguides yield a transmission loss of 2.3 dB/cm at 1550 nm. We show in this letter that using this device, N-methylaniline can be detected using its well-defined absorption fingerprint of the N-H bond near 1496 nm. Our measurements indicate linear response of the sensor to varying N-methylaniline concentrations. From our experiments, a sensitivity of this sensor down to a N-methylaniline concentration 0.7 vol. % is expected. Given the low-cost fabrication process used, and robust device configuration, our integration scheme provides a promising device platform for chemical sensing applications. (c) 2007 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available