4.8 Article

Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing

Journal

CHEMISTRY OF MATERIALS
Volume 19, Issue 5, Pages 1143-1146

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm061817f

Keywords

-

Ask authors/readers for more resources

Mixed-phase titanium dioxide nanocrystals with varying phase composition were prepared by a low-temperature solvothermal process. We have re-examined the effect of hydrochloric acid on the formation of rutile phase and found that the proportion of the rutile phase in synthesized mixed-phase materials did not increase monotonically with increasing acidity. Rather, there was an optimum HCl/Ti molar ratio for rutile formation when titanium tetra-isopropoxide was used as the titanium precursor. At high HCl/Ti ratios, Cl- and H2O may act as charge-shielding agents, inhibiting the rutile formation during the solvothermal process. A low H2O/Ti molar ratio was necessary for preparing anatase-rutile composites, because the formation of photocatalytically inactive brookite phase was favored at relatively high H2O/Ti molar ratios. In addition, we found the solvothermal processing to be a possible approach to control interparticle connection. Mixed-phase TiO2 nanocrystals synthesized at relatively high H2O/Ti molar ratios possessed abundant surface hydroxyl groups and tended to form micrometer-sized aggregates. We suggest that hydrogen bonding can be utilized to bring TiO2 nanocrystals together, creating solid-solid interfaces upon calcination, thereby potentially facilitating interparticle charge transfer in photocatalytic processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available