4.8 Article

Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0609897104

Keywords

leucine toxicity; nitrogen-metabolic phosphotransferase system (PTS); potassium transporter TrkA; protein-protein interaction; signal transduction

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

The maintenance of ionic homeostasis in response to changes in the environment is essential for all living cells. Although there are still many important questions concerning the role of the major monovalent cation K+, cytoplasmic K+ in bacteria is required for diverse processes. Here, we show that enzyme IIA(Ntr) (EIIA(Ntr)) of the nitrogen-metabolic phosphotransferase system interacts with and regulates the Escherichia coli K+ transporter TrkA. Previously we reported that an E. coli K-12 mutant in the ptsN gene encoding EIIANtr was extremely sensitive to growth inhibition by leucine or leucine-containing peptides (LCPs). This sensitivity was due to the requirement of the dephosphorylated form of EIIA(Ntr) for the derepression of ilvBN expression. Whereas the ptsN mutant is extremely sensitive to LCPs, a ptsN trkA double mutant is as resistant as WT. Furthermore, the sensitivity of the ptsN mutant to LCPs decreases as the K+ level in culture media is lowered. We demonstrate that dephosphorylated EIIANtr, but not its phosphorylated form, forms a tight complex with TrkA that inhibits the accumulation of high intracellular concentrations of K+. High cellular K+ levels in a ptsN mutant promote the sensitivity of E. coli K-12 to leucine or LCPs by inhibiting both the expression of ilvBN and the activity of its gene products. Here, we delineate the similarity of regulatory mechanisms for the paralogous carbon and nitrogen phosphotransferase systems. Dephosphorylated EIIA(Glc) regulates a variety of transport systems for carbon sources, whereas dephosphorylated EIIA(Ntr) regulates the transport system for K+, which has global effects related to nitrogen metabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available