4.6 Article

Stimulation-induced changes in NADH fluorescence and mitochondrial membrane potential in lizard motor nerve terminals

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 579, Issue 3, Pages 783-798

Publisher

WILEY
DOI: 10.1113/jphysiol.2006.126383

Keywords

-

Funding

  1. NCRR NIH HHS [1S10 RR16856] Funding Source: Medline
  2. NINDS NIH HHS [2T32 NS 07044, R21 NS049374, NS 12207, NS 49374, T32 NS007044, NS 12404, R01 NS012404, R01 NS012207] Funding Source: Medline

Ask authors/readers for more resources

To investigate mitochondrial responses to repetitive stimulation, we measured changes in NADH fluorescence and mitochondrial membrane potential (Psi(m)) produced by trains of action potentials (50 Hz for 10-50 s) delivered to motor nerve terminals innervating external intercostal muscles. Stimulation produced a rapid decrease in NADH fluorescence and partial depolarization of Psi(m). These changes were blocked when Ca2+ was removed from the bath or when N-type Ca2+ channels were inhibited with omega-conotoxin GVIA, but were not blocked when bath Ca2+ was replaced by Sr2+, or when vesicular release was inhibited with botulinum toxin A. When stimulation stopped, NADH fluorescence and Psi(m) returned to baseline values much faster than mitochondrial [Ca2+]. In contrast to findings in other tissues, there was usually little or no poststimulation overshoot of NADH fluorescence. These findings suggest that the major change in motor terminal mitochondrial function brought about by repetitive stimulation is a rapid acceleration of electron transport chain (ETC) activity due to the Psi(m) depolarization produced by mitochondrial Ca2+ (or Sr2+) influx. After partial inhibition of complex I of the ETC with amytal, stimulation produced greater Psi(m) depolarization and a greater elevation of cytosolic [Ca2+]. These results suggest that the ability to accelerate ETC activity is important for normal mitochondrial sequestration of stimulation-induced Ca2+ loads.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available