4.8 Article

Classical spin models and the quantum-stabilizer formalism

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.117207

Keywords

-

Ask authors/readers for more resources

We relate a large class of classical spin models, including the inhomogeneous Ising, Potts, and clock models of q-state spins on arbitrary graphs, to problems in quantum physics. More precisely, we show how to express partition functions as inner products between certain quantum-stabilizer states and product states. This connection allows us to use powerful techniques developed in quantum-information theory, such as the stabilizer formalism and classical simulation techniques, to gain general insights into these models in a unified way. We recover and generalize several symmetries and high-low temperature dualities, and we provide an efficient classical evaluation of partition functions for all interaction graphs with a bounded tree-width.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available