4.8 Article

Thermoelectricity in molecular junctions

Journal

SCIENCE
Volume 315, Issue 5818, Pages 1568-1571

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1137149

Keywords

-

Ask authors/readers for more resources

By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4''-tribenzenedithiol in contact with gold were measured at room temperature to be + 8.7 +/- 2.1 microvolts per kelvin (mu V/K), + 12.9 +/- 2.2 mu V/K, and + 14.2 +/- 3.2 mu V/ K, respectively ( where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type ( hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available