4.6 Article

Multi-linearity algorithm for wall slip in two-dimensional gap flow

Journal

Publisher

WILEY
DOI: 10.1002/nme.1848

Keywords

wall slip; finite element algorithm; quadratic programming

Ask authors/readers for more resources

Wall slip has been observed in a micro/nanometer gap during the past few years. It is difficult to make a mathematical analysis for the hydrodynamics of the fluid flowing in a gap with wall slip because the fluid velocity at the liquid-solid inter-face is not known a priori. This difficulty is met especially in a two-dimensional slip flow due to the non-linearity of the slip control equation. In the present paper we developed a multi-linearity method to approach the non-linear control equation of the two-dimensional slip gap flow. We used an amended polygon to approximate the circle yield (slip) boundary of surface shear stress. The numerical solution does not need an iterative process and can simultaneously give rise to fluid pressure distribution, wall slip velocity and surface shear stress. We analysed the squeeze film flow between two parallel discs and the hydrodynamics of a finite slider gap with wall slip. Our numerical solutions show that wall slip is first developed in the large pressure gradient zone, where a high surface shear stress is easily generated, and then the slip zone is enlarged with the increase in the shear rate. Wall slip dramatically affects generation of the hydrodynamic pressure. Copyright (c) 2006 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available