4.8 Article

Electronic energy delocalization and dissipation in single- and double-stranded DNA

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0606757104

Keywords

excitons; femtosecond; spectroscopy; photophysics

Ask authors/readers for more resources

The mechanism that nature applies to dissipate excess energy from solar UV light absorption in DNA is fundamental, because its efficiency determines the vulnerability of all genetic material to photodamage and subsequent mutations. Using femtosecond time-resolved broadband spectroscopy, we have traced the electronic excitation in both time and space along the base stack in a series of single-stranded and double-stranded DNA oligonucleotides. The obtained results demonstrate not only the presence of delocalized electronic domains (excitons) as a result of UV light absorption, but also reveal the spatial extent of the excitons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available