4.8 Article

Synthesis of near-infrared-absorbing nanoparticle-assembled capsules

Journal

CHEMISTRY OF MATERIALS
Volume 19, Issue 6, Pages 1277-1284

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm062080x

Keywords

-

Ask authors/readers for more resources

Indocyanine green (ICG) is an FDA-approved photosensitizer dye used in clinical settings for optical diagnostics and near-infrared laser-based therapy. However, the rapid clearance and nonspecific vascular plasma binding issues impede ICG performance. Encapsulating ICG within a colloidal matrix is a potential approach to solving these problems, but thus far, there has been limited success. A new strategy, based on the nanoparticle assembly synthesis of stable, non-liposomal nanoparticle/polymer microcapsules, to encapsulate ICG is presented. Nanoparticle-assembled capsules (NACs) are prepared at room temperature, in aqueous solution, and at neutral pH by combining a polyallylamine solution, a phosphate solution, and an aqueous sol of silica nanoparticles; ICG-containing NACs with 0.6-1.0 mu m diameter are prepared by adding an ICG solution before the nanoparticle sol. ICG loading is readily controlled with an attainable maximum loading of similar to 23 wt %. There is negligible leakage from the capsules after 24 h at room temperature in phosphate buffer saline solution, with 17% ICG leakage after 8 h at 37 degrees C. ICG-containing NACs are capable of heat generation in response to near-infrared laser irradiation and are stable to multiple photothermal heating cycles. Fibroblast cells exposed to these capsules remain viable after 2 days of incubation. ICG-containing NACs are a promising material for new photothermal therapy applications and are illustrative of a new approach for encapsulating organic dye compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available