4.7 Article

Quasirelativistic theory. II. Theory at matrix level

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2710258

Keywords

-

Ask authors/readers for more resources

The Dirac operator in a matrix representation in a kinetically balanced basis is transformed to the matrix representation of a quasirelativistic Hamiltonian that has the same electronic eigenstates as the original Dirac matrix (but no positronic eigenstates). This transformation involves a matrix X, for which an exact identity is derived and which can be constructed either in a noniterative way or by various iteration schemes, not requiring an expansion parameter. Both linearly convergent and quadratically convergent iteration schemes are discussed and compared numerically. The authors present three rather different schemes, for each of which even in unfavorable cases convergence is reached within three or four iterations, for all electronic eigenstates of the Dirac operator. The authors present the theory both in terms of a non-Hermitian and a Hermitian quasirelativistic Hamiltonian. Quasirelativistic approaches at the matrix level known from the literature are critically analyzed in the frame of the general theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available