4.7 Article

Transition from locked to creeping subduction in the Shumagin region, Alaska

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 34, Issue 6, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006GL029073

Keywords

-

Ask authors/readers for more resources

GPS velocities from the Alaska Peninsula are modeled to determine the extent of locking on the Alaska-Aleutian subduction interface. The observations, which span from the Semidi Islands to Sanak Island, encompass the 1938, M-w 8.3, rupture zone and the transition into the Shumagin gap. Model parameters are optimized using a simulated annealing method. Coupling variation along strike of the plate interface show a nearly fully locked (90%) subduction zone at the Semidi Islands, decreasing to about 30% locked at the Shumagin Islands, and freely slipping to the west of the Shumagins. Independent rupture of the Shumagin segment could produce repeated M-w 7.6 earthquakes, unless a significant fraction of the slip on the interface occurs as afterslip following large earthquakes. Southwest directed velocities at most of the sites may be attributed to clockwise rotation of a Bering block.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available