4.7 Article

Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids

Journal

JOURNAL OF NEUROSCIENCE
Volume 27, Issue 12, Pages 3347-3355

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4846-06.2007

Keywords

TRPM8; phospholipase A2; lysophospholipid; arachidonic acid; menthol; icilin

Categories

Funding

  1. Medical Research Council [G0500847(75076), G0500847] Funding Source: Medline
  2. Medical Research Council [G0500847] Funding Source: researchfish
  3. MRC [G0500847] Funding Source: UKRI

Ask authors/readers for more resources

We investigated the role of phospholipase A2 (PLA2) and the effects of PLA2 products (polyunsaturated fatty acids and lysophospholipids) on the cold-sensitive channel transient receptor potential (melastatin)-8 (TRPM8), heterologously expressed in Chinese hamster ovary cells. TRPM8 responses to cold and the agonist icilin were abolished by inhibitors of the calcium-independent (iPLA2) form of the enzyme, whereas responses to menthol were less sensitive to iPLA2 inhibition. Inhibition of PLA2 similarly abolished the cold responses of the majority of cold-sensitive dorsal root ganglion neurons. The products of PLA2 had opposing effects on TRPM8. Lysophospholipids (LPLs) (lysophosphatidylcholine, lysophosphatidylinositol, and lysophosphatidylserine) altered the thermal sensitivity of TRPM8, raising the temperature threshold toward normal body temperature. Polyunsaturated fatty acids (PUFAs), such as arachidonic acid, inhibited the activation of TRPM8 by cold, icilin, and menthol. The relative potencies of lysophospholipids and PUFAs are such that lysophosphatidylcholine is able to modulate TRPM8 in the presence of an equimolar concentration of arachidonic acid. Positive modulation by LPLs provides a potential physiological mechanism for sensitizing and activating TRPM8 in the absence of temperature variations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available