4.8 Article

Quantum-electrodynamical photon splitting in magnetized nonlinear pair plasmas

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 12, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.125001

Keywords

-

Ask authors/readers for more resources

We present for the first time the nonlinear dynamics of quantum electrodynamic (QED) photon splitting in a strongly magnetized electron-positron (pair) plasma. By using a QED corrected Maxwell equation, we derive a set of equations that exhibit nonlinear couplings between electromagnetic (EM) waves due to nonlinear plasma currents and QED polarization and magnetization effects. Numerical analyses of our coupled nonlinear EM wave equations reveal the possibility of a more efficient decay channel, as well as new features of energy exchange among the three EM modes that are nonlinearly interacting in magnetized pair plasmas. Possible applications of our investigation to astrophysical settings, such as magnetars, are pointed out.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available