4.8 Article

Atomistic underpinnings for orientation selection in alloy dendritic growth

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 12, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.125701

Keywords

-

Ask authors/readers for more resources

In dendritic solidification, growth morphologies often display a pronounced sensitivity to small changes in composition. To gain insight into the origins of this phenomenon, we undertake an atomistic calculation of the magnitude and anisotropy of the crystal-melt interfacial free energy in a model alloy system featuring no atomic size mismatch and relatively ideal solution thermodynamics. By comparing the results of these calculations with predictions from recent phase-field calculations, we demonstrate that alloying gives rise to changes in free-energy anisotropies that are substantial on the scale required to induce changes in growth orientations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available