4.6 Article

Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling?

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 112, Issue D6, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2005JD006977

Keywords

-

Ask authors/readers for more resources

Coating of mineral dust particles by air pollutants leads to core-mantle particles. These composite aerosols could interact differently with atmospheric radiation than the uncoated dust. In our simplified radiative calculations we assumed that a spherical dust core is covered uniformly by a liquid refractive material, such as sulfate or nitrate. Theoretical calculations of optical properties of such particles show that the single-scattering albedo and the asymmetry parameter of core-mantle aerosols only differ significantly from uncoated dust if coating layers exceed 20% of the radius of the dust core. Global simulations of sulfate/nitrate-coated dust particles show that the thickness of the shell can be expected to range from 0 to 20% of the radius of the dust core. The result of this work is that mineral dust particles can be treated as external mixture within radiative calculations but the coating processes lead to changed loads in sulfate, nitrate, and mineral dust aerosol loads and therefore change their impact on Earth radiation. The combined anthropogenic forcing of dust, nitrate, and sulfate aerosols is -0.1 W/m(2); however, excluding heterogeneous interactions leads to a 3 times larger negative forcing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available