4.4 Article Proceedings Paper

Phylogenetic diversity of bacteria associated with ascidians in Eel Pond (Woods Hole, Massachusetts, USA)

Journal

JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY
Volume 342, Issue 1, Pages 138-146

Publisher

ELSEVIER
DOI: 10.1016/j.jembe.2006.10.024

Keywords

Ascidiacea; bacterial diversity; epibacteria; secondary metabolites; symbionts

Ask authors/readers for more resources

Recent studies have revealed that many marine invertebrates are closely associated with diverse microorganisms, frequently resulting in the production of compounds of biomedical interest. Thus far, ascidians have not been widely examined for the presence of bacterial associations, although the production of secondary metabolites is well documented. In the present study, we examined the gonad of Molgula manhattensis and the tunic surfaces of Botryllus schlosseri, Didemnum sp., and Botrylloides violaceus for the presence of associated bacteria. These ascidians are common inhabitants of the coastal ocean of Cape Cod, Massachusetts. We used denaturing gradient gel electrophoresis (DGGE) as well as cloning and sequencing of 16S rDNA to analyze the microbial communities. There is a strong evidence that spiroplasma-like bacteria colonize the gonad of the solitary ascidian M. manhattensis. The bacteria might be vertically transmitted and may be involved in the production of secondary metabolites that deter predators of the ascidians. T he bacterial communities found on the tunic surfaces of the colonial ascidians were found to be more diverse. However, in all cases the bacterial communities were predominated by alpha-proteobacteria. Alpha-proteobacteria related to the obtained sequences have been identified as symbionts in a variety of hosts, suggesting a specific role for these bacteria. However, based on our data it is difficult to differentiate between persistently and only transiently associated bacteria. Overall, this study demonstrates that ascidian species are associated with diverse bacterial populations. Future studies will aim to elucidate the precise relationships between bacteria and ascidians and to identify bioactive compounds that might be produced as a result of these relationships. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available