4.6 Article

Free vibration analysis of fluid-conveying single-walled carbon nanotubes

Journal

APPLIED PHYSICS LETTERS
Volume 90, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2717554

Keywords

-

Ask authors/readers for more resources

The effect of fluid flow on the free vibration and instability of fluid-conveying single-walled carbon nanotubes is studied. The possibility of developing a technique to measure the mass flow rate of fluid is examined. Atomistic simulations and the continuum beam model are used. Simulations are performed to quantify the inertial, stiffness, Coriolis, and centrifugal forces generated by flow during the free vibration. A numerical expression is developed to measure the mass flow rate of the fluid velocities up to 40% of the critical flow velocity. This observation is useful to quantify the mass flow measurement of fluid conveying single-walled carbon nanotubes. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available