4.7 Article

Are many-body electronic polarization effects important in liquid water?

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 12, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2710252

Keywords

-

Ask authors/readers for more resources

Many-body electronic polarization effects may be important for an accurate description of aqueous environments. As a result, numerous polarizable water models have been developed to include explicit polarization effects in intermolecular potential functions. In this paper, it is shown for liquid water at ambient conditions that such many-body polarization interactions can be decomposed into effective pairwise contributions using the force-matching (FM) method [Izvekov , J. Chem. Phys. 120, 10896 (2004)]. It is found that an effective pairwise water model obtained by the FM method can accurately reproduce various bulk structural and thermodynamic properties obtained from an accurate fully polarizable water model. In addition, the effective pairwise water model also provides a reasonable description of the water liquid-vapor interface, thus exhibiting a degree of transferability to heterogeneous environments. These results suggest that the role and importance of many-body electronic polarization effects in aqueous systems might be fruitfully explored relative to the best possible pairwise decomposable bulk phase model as the reference state. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available