4.8 Article

Anaerobic sulfatase-maturating enzymes: Radical SAM enzymes able to catalyze in vitro sulfatase post-translational modification

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 129, Issue 12, Pages 3462-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja067175e

Keywords

-

Ask authors/readers for more resources

Sulfatases are widespread enzymes, found from prokaryotes to eukaryotes and involved in many biochemical processes. To be active, all known sulfatases undergo a unique post-translational modification leading to the conversion of a critical active-site residue, i.e., a serine or a cysteine, into a C alpha-formylglycine (FGly). Two different systems are involved in sulfatase maturation. One, named FGE, is an oxygen-dependent oxygenase and has been fully characterized. The other one, a member of the so-called radical SAM super-family, has been only preliminary investigated. This latter system allows the maturation of sulfatases in strictly anaerobic conditions and has thus been named anSME (anaerobic Sulfatase Maturating Enzyme). Our results provide the first experimental evidence that anSME are iron-sulfur enzymes able to perform the reductive cleavage of SAM and thus belong to the radical SAM super-family. Furthermore, they demonstrate that anSME are able to efficiently oxidize cysteine into FGly in an oxygen-independent manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available