4.6 Article

Differential and integral cross sections of the N(2D)+H2→NH+H reaction from exact quantum and quasi-classical trajectory calculations

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 111, Issue 12, Pages 2376-2384

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0682715

Keywords

-

Ask authors/readers for more resources

Exact quantum mechanical state-to-state differential and integral cross sections and their energy dependence have been calculated on an accurate NH2 potential energy surface (PES), using a newly proposed Chebyshev wave packet method. The NH product is found to have a monotonically decaying vibrational distribution and an inverted rotational distribution. The product angular distributions peak in both forward and backward directions, but with a backward bias. This backward bias is more pronounced than that observed previously on a less accurate PES. Both the differential and integral cross sections oscillate mildly with collision energy, indicating the dominance of short-lived resonances. The quantum mechanical results are compared with those obtained from quasi-classical trajectories. The agreement is generally reasonable and the discrepancies can be attributed to the neglect of quantum effects such as tunneling. Detailed analysis of the trajectories revealed that the backward bias in the differential cross section stems overwhelmingly from the fast insertion component of the reaction, augmented with some flux from the abstraction channel, particularly at high collision energies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available