4.7 Article

Anti-nociceptive and anti-allodynic effects of a high affinity NOP hexapeptide [Ac-RY(3-Cl)YRWR-NH2] (Syn 1020) in rodents

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 560, Issue 1, Pages 29-35

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2006.12.015

Keywords

NOP receptor; antinociception; nociception; analgesia; allodynia; nociceptin; thermal pain; mechanical pain

Funding

  1. NIDA NIH HHS [DA06682] Funding Source: Medline
  2. NIDDK NIH HHS [DK55457] Funding Source: Medline

Ask authors/readers for more resources

There has been a flurry of activity to develop agonists and antagonists for the member of the opioid receptor family, NOP receptor (also known as ORL1), in part to understand its role in pain. Modifications of a hexapeptide originally identified from a combinatorial library have led to the discovery of a high affinity hexapeptide agonist Ac-RY(3-Cl)YRWR-NH3 (Syn 1020). In the following experiments we characterized the antinociceptive effects of Syn 1020 in the tail-flick model of acute pain and the diabetic neuropathy model of chronic pain in mice and rats, respectively. Acute antinociception was assessed using the tail-flick assay in mice in which animals received intracerebroventricular (i.c.v.) or subcutaneous (s.c.) injections of Syn 1020 alone or with morphine and were tested for tail-flick latencies. In the chronic pain model, diabetic neuropathy was induced by injections of streptozotocin in rats. Tactile allodynia was measured, with von Frey hair filaments, following intraperitoneal (i.p.) injections of Syn 1020 or gabapentin (positive control). In mice, i.c.v. injections of Syn 1020 did not have any pro- or antinociceptive effects, however, Syn 1020 reversed morphine antinociception with a similar potency as N/OFQ (the natural ligand to NOP). S.c. injections of Syn 1020 in mice also produced analgesic effects. In rats, i.p, injections,of Syn 1020 produced anti-allodynic effects. Thus, Syn 1020, a NOP receptor directed peptide, administered systemically has anti-nociceptive activity in both acute and chronic pain models in mice and rats respectively. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available