4.8 Article

Colossal shear-strength enhancement of low-density cubic BC2N by nanoindentation

Journal

PHYSICAL REVIEW LETTERS
Volume 98, Issue 13, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.98.135505

Keywords

-

Ask authors/readers for more resources

Recently synthesized low-density cubic BC2N exhibits surprisingly high shear strength inferred by nanoindentation in stark contrast to its relatively low elastic moduli. We show by first-principles calculation that this intriguing phenomenon can be ascribed to a novel structural hardening mechanism due to the compressive stress beneath the indenter. It significantly strengthens the weak bonds connecting the shear planes, yielding a colossal enhancement in shear strength. The resulting biaxial stress state produces atomistic fracture modes qualitatively different from those under pure shear stress. These results provide the first consistent explanation for a variety of experiments on the low-density cubic BC2N phase across a large range of strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available