4.6 Article

Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 73, Issue 8, Pages 2673-2681

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02174-06

Keywords

-

Ask authors/readers for more resources

The pab genes for para-aminobenzoic acid (pABA) biosynthesis in Lactococcus lactis were identified and characterized. In L. lactis NZ9000, only two of the three genes needed for pABA production were initially found. No gene coding for 4-amino-4-deoxychorismate lyase (pabC) was initially annotated, but detailed analysis revealed that pabC was fused with the 3' end of the gene coding for chorismate synthetase component II (pabB). Therefore, we hypothesize that all three enzyme activities needed for pABA production are present in L. lactis, allowing for the production of pABA. Indeed, the overexpression of the pABA gene cluster in L. lactis resulted in elevated pABA pools, demonstrating that the genes are involved in the biosynthesis of pABA. Moreover, a pABA knockout (KO) strain lacking pabA and pabBC was constructed and shown to be unable to produce folate when cultivated in the absence of pABA. This KO strain was unable to grow in chemically defined medium lacking glycine, serine, nucleobases/nucleos ides, and pABA. The addition of the purine guanine, adenine, xanthine, or inosine restored growth but not the production of folate. This suggests that, in the presence of purines, folate is not essential for the growth of L. lactis. It also shows that folate is not strictly required for the pyrimidine biosynthesis pathway. L. lactis strain NZ7024, overexpressing both the folate and pABA gene clusters, was found to produce 2.7 mg of folate/liter per optical density unit at 600 mn when the strain was grown on chemically defined medium without pABA. This is in sharp contrast to L. lactis strains overexpressing only one of the two gene clusters. Therefore, we conclude that elevated folate levels can be obtained only by the overexpression of folate combined with the overexpression of the pABA biosynthesis gene cluster, suggesting the need for a balanced carbon flux through the folate and pABA biosynthesis pathway in the wild-type strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available