4.3 Article

Iterative design of multiplane holograms: experiments and applications

Journal

OPTICAL ENGINEERING
Volume 46, Issue 4, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2727379

Keywords

holography; diffractive optical elements; imaging; optical design; imaging

Categories

Ask authors/readers for more resources

We present an experimental confirmation of optical properties of multiplane holograms designed with our novel iterative method. The method allows encoding many input intensity distributions into a single phase-only hologram. The object planes can be placed at variable distances, and their content is fully customizable. The reconstructed three-dimensional (3D) scenes exhibit high contrast and low noise level in all designed image planes. The results of numerical simulations are compared with those of a reconstruction in an optical setup. Holograms for optical reconstructions were manufactured using two methods: photographic and electron beam lithography (EBL). Experimental results achieved with both methods are compared. We present our research on a new class of iterative holograms, containing up to eleven object planes, designed in close distance to each other. The elements exhibit unusual light focusing possibilities and extraordinary imaging properties, thus introducing a number of possible practical applications, which are discussed. (C) 2007 Society of Photo-Optical Instrumentation Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available