4.7 Article

Runout effects in milling: Surface finish, surface location error, and stability

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2006.06.014

Keywords

machining; eccentricity; dynamics; simulation; chatter; bifurcation

Ask authors/readers for more resources

This paper investigates the effect of milling cutter teeth runout on surface topography, surface location error, and stability in end milling. Runout remains an important issue in machining because commercially-available cutter bodies often exhibit significant variation in the teeth/insert radial locations; therefore, the chip load on the individual cutting teeth varies periodically. This varying chip load influences the machining process and can lead to premature failure of the cutting edges. The effect of runout on cutting force and surface finish for proportional and non-proportional tooth spacing is isolated here by completing experiments on a precision milling machine with 0.1 mu m positioning repeatability and 0.02 mu m spindle error motion. Experimental tests are completed with different amounts of radial runout and the results are compared with a comprehensive time-domain simulation. After verification, the simulation is used to explore the relationships between runout, surface finish, stability, and surface location error. A new instability that occurs when harmonics of the runout frequency coincide with the dominant system natural frequency is identified. (C) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available