3.9 Article

Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma

Journal

MINIMALLY INVASIVE NEUROSURGERY
Volume 50, Issue 2, Pages 65-70

Publisher

GEORG THIEME VERLAG KG
DOI: 10.1055/s-2007-982508

Keywords

4th ventricular ependymoma; brain imaging; simulation; neurosurgical planning; 3-dimensional reconstruction.; virtual reality; stereoscopic vision; dextroscope

Ask authors/readers for more resources

Objective and Importance: Advances in computer imaging and technology have facilitated enhancement in surgical planning with a 3-dimensional model of the surgical plan of action utilizing advanced visualization tools in order to plan individual interactive operations with the aid of the dextroscope. This provides a proper 3-dimensional imaging insight to the pathological anatomy and sets a new dimension in collaboration for training and education. Clinical Presentation: The case of a seventeen-year-old female, being operated with the aid of a preoperative 3-dimensional virtual reality planning and the practical application of the neurosurgical operation, is presented. This young lady presented with a two-year history of recurrent episodes of severe, global, throbbing headache with episodes of projectile vomiting associated with shoulder pain which progressively worsened. She had no obvious neurological deficits on clinical examination. CT and MRI showed a contrast-enhancing midline posterior fossa space-occupying lesion. Intervention: Utilizing virtual imaging technology with the aid of a dextroscope which generates stereoscopic images, a 3-dimensional image was produced with the CT and MRI images. A preoperative planning for excision of the lesion was made and a real-time 3-dimensional volume was produced and surgical planning with the dextroscope was made and the lesion excised. Conclusion: Virtual reality has brought new proportions in 3-dimensional planning and management of various complex neuroanatomical problems that are faced during various operations. Integration of 3-dimensional imaging with stereoscopic vision makes understanding the complex anatomy easier and helps improve decision making in patient management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available