4.5 Article

The extrinsic caspase pathway modulates endotoxin-induced diaphragm contractile dysfunction

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 102, Issue 4, Pages 1649-1657

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00377.2006

Keywords

skeletal muscle; sepsis; weakness; tumor necrosis factor-alpha; tumor necrosis factor receptor 1

Funding

  1. NHLBI NIH HHS [R01 HL080429] Funding Source: Medline

Ask authors/readers for more resources

The mechanisms by which infections induce diaphragm dysfunction remain poorly understood. The purpose of this study was to determine which caspase pathways (i.e., the extrinsic, death receptor-linked caspase-8 pathway, and/or the intrinsic, mitochondrial-related caspase-9 pathway) are responsible for endotoxin-induced diaphragm contractile dysfunction. We determined 1) whether endotoxin administration (12 mg/kg IP) to mice induces caspase-8 or -9 activation in the diaphragm; 2) whether administration of a caspase-8 inhibitor (N-acetyl-Ile-Glu-Thr-Asp-CHO, 3 mg/kg iv) or a caspase-9 inhibitor (N-acetyl-Leu-Glu-His-Asp-CHO, 3 mg/kg iv) blocks endotoxin-induced diaphragmatic weakness and caspase-3 activation; 3) whether TNF receptor 1-deficient mice have reduced caspase activation and diaphragm dysfunction following endotoxin; and 4) whether cytokines (TNF-alpha or cytomix, a mixture of TNF-alpha, interleukin-1 beta, interferon-gamma, and endotoxin) evoke caspase activation in C2C12 myotubes. Endotoxin markedly reduced diaphragm force generation (P < 0.001) and induced increases in caspase-3 and caspase-8 activity (P < 0.03), but failed to increase caspase-9. Inhibitors of caspase-8, but not of caspase-9, prevented endotoxin-induced reductions in diaphragm force and caspase-3 activation (P < 0.01). Mice deficient in TNF receptor I also had reduced caspase-8 activation (P < 0.001) and less contractile dysfunction (P < 0.01) after endotoxin. Furthermore, incubation of C2C12 cells with either TNF-alpha or cytomix elicited significant caspase-8 activation. The caspase-8 pathway is strongly activated in the diaphragm following endotoxin and is responsible for caspase-3 activation and diaphragm weakness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available