4.7 Article

Self-stability of a simple walking model driven by a rhythmic signal

Journal

NONLINEAR DYNAMICS
Volume 48, Issue 1-2, Pages 1-16

Publisher

SPRINGER
DOI: 10.1007/s11071-006-9030-3

Keywords

simple walking model; central pattern generator (CPG); self-stability; Poincare map

Ask authors/readers for more resources

In this paper, we analyzed the dynamic properties of a simple walking model of a biped robot driven by a rhythmic signal from an oscillator. The oscillator receives no sensory feedback and the rhythmic signal is an open loop. The simple model consists of a hip and two legs that are connected at the hip. The leg motion is generated by a rhythmic signal. In particular, we analytically examined the stability of a periodic walking motion. We obtained approximate periodic solutions and the Jacobian matrix of a Poincare map by the power-series expansion using a small parameter. Although the analysis was inconclusive when we used only the first order expansion, by employing the second order expansion it clarified the stability, revealing that the periodic walking motion is asymptotically stable and the simple model possesses self-stability as an inherent dynamic characteristic in walking. We also clarified the stability region with respect to model parameters such as mass ratio and walking speed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available