3.8 Article

Arsenic-contaminated groundwater from parts of Damodar fan-delta and west of Bhagirathi River, West Bengal, India: influence of fluvial geomorphology and Quaternary morphostratigraphy

Journal

ENVIRONMENTAL GEOLOGY
Volume 52, Issue 3, Pages 489-501

Publisher

SPRINGER
DOI: 10.1007/s00254-006-0482-z

Keywords

arsenic in groundwater; Damodar fan-delta; quaternary morphostratigraphy; source and release of arsenic; West Bengal (India)

Ask authors/readers for more resources

Arsenic contamination in groundwater affecting West Bengal (India) and Bangladesh is a serious environmental problem. Contamination is extensive in the low-lying areas of Bhagirathi-Ganga delta, located mainly to the east of the Bhagirathi River. A few isolated As-contaminated areas occur west of the Bhagirathi River and over the lower parts of the Damodar river fan-delta. The Damodar being a Peninsular Indian river, the arsenic problem is not restricted to Himalayan rivers alone. Arsenic contamination in the Bengal Delta is confined to the Holocene Younger Delta Plain and the alluvium that was deposited around 10,000-7,000 years BP, under combined influence of the Holocene sea-level rise and rapid erosion in the Himalaya. Further, contaminated areas are often located close to distribution of abandoned or existing channels, swamps, which are areas of surface water and biomass accumulation. Extensive extraction of groundwater mainly from shallow aquifers cause recharge from nearby surface water bodies. Infiltration of recharge water enriched in dissolved organic matter derived either from recently accumulated biomass and/or from sediment organic matter enhanced reductive dissolution of hydrated iron oxide that are present mainly as sediment grain coatings in the aquifers enhancing release of sorbed arsenic to groundwater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available