4.2 Article

Global and local development of gray and white matter volume in normal children and adolescents

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 178, Issue 3, Pages 296-307

Publisher

SPRINGER
DOI: 10.1007/s00221-006-0732-z

Keywords

normal brain development; brain morphology; structural magnetic resonance imaging; voxel-based morphometry; VBM; gender differences; normal ageing

Categories

Funding

  1. NICHD NIH HHS [R01 HD038578, R01-HD38578-01] Funding Source: Medline

Ask authors/readers for more resources

Over the last decade, non-invasive, high-resolution magnetic resonance imaging has allowed investigating normal brain development. However, much is still not known in this context, especially with regard to regional differences in brain morphology between genders. We conducted a large-scale study utilizing fully automated analysis-approaches, using high-resolution MR-imaging data from 200 normal children and aimed at providing reference data for future neuroimaging studies. Global and local aspects of normal development of gray and white matter volume were investigated as a function of age and gender while covarying for known nuisance variables. Global developmental patterns were apparent in both gray and white matter, with gray matter decreasing and white matter increasing significantly with age. Gray matter loss was most pronounced in the parietal lobes and least in the cingulate and in posterior temporal regions. White matter volume gains with age were almost uniform, with an accentuation of the pyramidal tract. Gender influences were detectable for both gray and white matter. Voxel-based analyses confirmed significant differences in brain morphology between genders, like a larger amygdala in boys or a larger caudate in girls. We could demonstrate profound influences of both age and gender on normal brain morphology, confirming and extending earlier studies. The knowledge of such influence allows for the consideration of age- and gender-effects in future pediatric neuroimaging studies and advances our understanding of normal and abnormal brain development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available