3.8 Article

Analysis of electrokinetic mixing using AC electric field and patchwise surface heterogeneities

Publisher

JAPAN SOC APPLIED PHYSICS
DOI: 10.1143/JJAP.46.1608

Keywords

electroosmotic flow; surface heterogeneities; electric field; microfluidic mixing

Ask authors/readers for more resources

In this paper, the authors investigate the use of an applied AC electric field and microchannel surface heterogeneities to carry out the microfluidic mixing of two-dimensional, time-dependent electroosmotic flows. The time-dependent flow fields within the microchannel are simulated using the backwards-Euler time-stepping numerical method. The mixing efficiencies obtained in microchannels with two different patchwise surface heterogeneity patterns are investigated. In general, the results show that the application of an AC electric field significantly reduces the required mixing length compared with the use of a DC electric field. Furthermore, the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulation regions within the bulk flow. These circulation regions grow and decay periodically in accordance with the periodic variation of the AC electric field intensity and provide an effective means of enhancing species mixing in the microchannel. Consequently, the use of an AC electric field together with patchwise surface heterogeneities permits a significant reduction in both the mixing channel length and the retention time required to attain a homogeneous solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available