4.7 Article

Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex

Journal

NATURE NEUROSCIENCE
Volume 10, Issue 4, Pages 462-468

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1861

Keywords

-

Categories

Ask authors/readers for more resources

The thalamus provides fundamental input to the neocortex. This input activates inhibitory interneurons more strongly than excitatory neurons, triggering powerful feedforward inhibition. We studied the mechanisms of this selective neuronal activation using a mouse somatosensory thalamocortical preparation. Notably, the greater responsiveness of inhibitory interneurons was not caused by their distinctive intrinsic properties but was instead produced by synaptic mechanisms. Axons from the thalamus made stronger and more frequent excitatory connections onto inhibitory interneurons than onto excitatory cells. Furthermore, circuit dynamics allowed feedforward inhibition to suppress responses in excitatory cells more effectively than in interneurons. Thalamocortical excitatory currents rose quickly in interneurons, allowing them to fire action potentials before significant feedforward inhibition emerged. In contrast, thalamocortical excitatory currents rose slowly in excitatory cells, overlapping with feedforward inhibitory currents that suppress action potentials. These results demonstrate the importance of selective synaptic targeting and precise timing in the initial stages of neocortical processing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available