4.0 Article

Signaling by hepatocyte growth factor in neurons is induced by pharmacological stimulation of synaptic activity

Journal

SYNAPSE
Volume 61, Issue 4, Pages 199-204

Publisher

WILEY
DOI: 10.1002/syn.20362

Keywords

brain; synapse; activity-dependent secretion; HGF; Met

Categories

Funding

  1. NIMH NIH HHS [MH069778] Funding Source: Medline

Ask authors/readers for more resources

Activity-dependent signaling by growth factors is hypothesized to link synaptic activity to structural and functional modifications of neurons. The receptor tyrosine kinase Met and its ligand, hepatocyte growth factor (HGF), are clustered at excitatory synapses and may regulate aspects of excitatory synaptic function, as HGF increases expression of excitatory synaptic proteins, enhances their clustering at sites along dendrites, and increases current through the NMDA receptor. In this article, we test for secretion or activation of HGF and for activation of Met in response to pharmacological stimulation of synaptic activity. Stimulation of dissociated hippocampal neuron cultures with glutamate caused increased immunocytochemical staining against HGF on nonpermeabilized cells. Glutamate treatment also decreased the amount of pro HGF and increased the amount of the proteolytically-activated HGF in immunoblots of neuron culture lysates, and increased the levels of activated HGF in culture media. Stimulation of neuron cultures with glutamate or bicuculline induced autophosphorylation of Met on dendrites and the soma of neurons. Pretreatment of neurons with glutamate receptor inhibitors prior to glutamate treatment blocked autophosphorylation of Met. These results suggest that HGF can participate in activity dependent signaling in neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available