4.5 Article

Unusual thermal stability of RNA/[RP-PS]-DNA/RNA triplexes containing a homopurine DNA strand

Journal

BIOPHYSICAL JOURNAL
Volume 92, Issue 7, Pages 2507-2515

Publisher

CELL PRESS
DOI: 10.1529/biophysj.106.099283

Keywords

-

Categories

Ask authors/readers for more resources

Homopurine deoxyribonucleoside phosphorothioates, as short as hexanucleotides and possessing all internucleotide linkages of RP configuration, form a triple helix with two RNA or 2'-OMe-RNA strands, with Watson-Crick and Hoogsteen complementarity. Melting temperature and fluorescence quenching experiments strongly suggest that the Hoogsteen RNA strand is parallel to the homopurine [RP-PS]-oligomer. Remarkably, these triplexes are thermally more stable than complexes formed by unmodified homopurine DNA molecules of the same sequence. The triplexes formed by phosphorothioate DNA dodecamers containing 4-6 dG residues are thermally stable at pH 7.4, although their stability increases significantly at pH 5.3. FTIR measurements suggest participation of the C-2-carbonyl group of the pyrimidines in the stabilization of the triplex structure. Formation of triple-helix complexes with exogenously delivered PS-oligos may become useful for the reduction of RNA accessibility in vivo and, hence, selective suppression/inhibition of the translation process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available