4.8 Article

Sliding-mode flux observer with online rotor parameter estimation for induction motors

Journal

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume 54, Issue 2, Pages 716-723

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2007.891786

Keywords

field-oriented control; induction motor; online parameter estimation; sliding mode

Ask authors/readers for more resources

Field orientation techniques without flux measurements depend on the parameters of the motor, particularly on the rotor resistance or rotor time constant (for rotor field orientation). Since these parameters change continuously as a function of temperature, it is important that the value of rotor resistance is continuously estimated online. A fourth-order sliding-mode flux observer is developed in this paper. Two sliding surfaces representing combinations of estimated flux and current. errors are used to enforce the flux and current estimates to their real values. Switching functions are used to drive the sliding surfaces to zero. The equivalent values of the switching functions (low-frequency components) are proven to be the rotor resistance and the inverse of the rotor time constant. This property is used to simultaneously estimate the rotor resistance and the inverse of the time constant without prior knowledge of either the rotor resistance or the magnetizing inductance. Simulations and experimental results prove the validity of the proposed approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available